9 resultados para SVM classifier

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: DNA-binding proteins play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. Identification of DNA-binding proteins is one of the major challenges in the field of genome annotation. There have been several computational methods proposed in the literature to deal with the DNA-binding protein identification. However, most of them can't provide an invaluable knowledge base for our understanding of DNA-protein interactions. Results: We firstly presented a new protein sequence encoding method called PSSM Distance Transformation, and then constructed a DNA-binding protein identification method (SVM-PSSM-DT) by combining PSSM Distance Transformation with support vector machine (SVM). First, the PSSM profiles are generated by using the PSI-BLAST program to search the non-redundant (NR) database. Next, the PSSM profiles are transformed into uniform numeric representations appropriately by distance transformation scheme. Lastly, the resulting uniform numeric representations are inputted into a SVM classifier for prediction. Thus whether a sequence can bind to DNA or not can be determined. In benchmark test on 525 DNA-binding and 550 non DNA-binding proteins using jackknife validation, the present model achieved an ACC of 79.96%, MCC of 0.622 and AUC of 86.50%. This performance is considerably better than most of the existing state-of-the-art predictive methods. When tested on a recently constructed independent dataset PDB186, SVM-PSSM-DT also achieved the best performance with ACC of 80.00%, MCC of 0.647 and AUC of 87.40%, and outperformed some existing state-of-the-art methods. Conclusions: The experiment results demonstrate that PSSM Distance Transformation is an available protein sequence encoding method and SVM-PSSM-DT is a useful tool for identifying the DNA-binding proteins. A user-friendly web-server of SVM-PSSM-DT was constructed, which is freely accessible to the public at the web-site on http://bioinformatics.hitsz.edu.cn/PSSM-DT/.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Identifying biological markers to aid diagnosis of bipolar disorder (BD) is critically important. To be considered a possible biological marker, neural patterns in BD should be discriminant from those in healthy individuals (HI). We examined patterns of neuromagnetic responses revealed by magnetoencephalography (MEG) during implicit emotion-processing using emotional (happy, fearful, sad) and neutral facial expressions, in sixteen BD and sixteen age- and gender-matched healthy individuals. Methods: Neuromagnetic data were recorded using a 306-channel whole-head MEG ELEKTA Neuromag System, and preprocessed using Signal Space Separation as implemented in MaxFilter (ELEKTA). Custom Matlab programs removed EOG and ECG signals from filtered MEG data, and computed means of epoched data (0-250ms, 250-500ms, 500-750ms). A generalized linear model with three factors (individual, emotion intensity and time) compared BD and HI. A principal component analysis of normalized mean channel data in selected brain regions identified principal components that explained 95% of data variation. These components were used in a quadratic support vector machine (SVM) pattern classifier. SVM classifier performance was assessed using the leave-one-out approach. Results: BD and HI showed significantly different patterns of activation for 0-250ms within both left occipital and temporal regions, specifically for neutral facial expressions. PCA analysis revealed significant differences between BD and HI for mild fearful, happy, and sad facial expressions within 250-500ms. SVM quadratic classifier showed greatest accuracy (84%) and sensitivity (92%) for neutral faces, in left occipital regions within 500-750ms. Conclusions: MEG responses may be used in the search for disease specific neural markers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The n-tuple pattern recognition method has been tested using a selection of 11 large data sets from the European Community StatLog project, so that the results could be compared with those reported for the 23 other algorithms the project tested. The results indicate that this ultra-fast memory-based method is a viable competitor with the others, which include optimisation-based neural network algorithms, even though the theory of memory-based neural computing is less highly developed in terms of statistical theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The n-tuple recognition method was tested on 11 large real-world data sets and its performance compared to 23 other classification algorithms. On 7 of these, the results show no systematic performance gap between the n-tuple method and the others. Evidence was found to support a possible explanation for why the n-tuple method yields poor results for certain datasets. Preliminary empirical results of a study of the confidence interval (the difference between the two highest scores) are also reported. These suggest a counter-intuitive correlation between the confidence interval distribution and the overall classification performance of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results concerning the application of the Good-Turing (GT) estimation method to the frequentist n-tuple system. We show that the Good-Turing method can, to a certain extent rectify the Zero Frequency Problem by providing, within a formal framework, improved estimates of small tallies. We also show that it leads to better tuple system performance than Maximum Likelihood estimation (MLE). However, preliminary experimental results suggest that replacing zero tallies with an arbitrary constant close to zero before MLE yields better performance than that of GT system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The n-tuple recognition method is briefly reviewed, summarizing the main theoretical results. Large-scale experiments carried out on Stat-Log project datasets confirm this method as a viable competitor to more popular methods due to its speed, simplicity, and accuracy on the majority of a wide variety of classification problems. A further investigation into the failure of the method on certain datasets finds the problem to be largely due to a mismatch between the scales which describe generalization and data sparseness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter, we elaborate on the well-known relationship between Gaussian processes (GP) and Support Vector Machines (SVM). Secondly, we present approximate solutions for two computational problems arising in GP and SVM. The first one is the calculation of the posterior mean for GP classifiers using a `naive' mean field approach. The second one is a leave-one-out estimator for the generalization error of SVM based on a linear response method. Simulation results on a benchmark dataset show similar performances for the GP mean field algorithm and the SVM algorithm. The approximate leave-one-out estimator is found to be in very good agreement with the exact leave-one-out error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we compare the robustness of several types of stylistic markers to help discriminate authorship at sentence level. We train a SVM-based classifier using each set of features separately and perform sentence-level authorship analysis over corpus of editorials published in a Portuguese quality newspaper. Results show that features based on POS information, punctuation and word / sentence length contribute to a more robust sentence-level authorship analysis. © Springer-Verlag Berlin Heidelberg 2010.